UCLA

Birational Geometry Seminar

Geography of surfaces with big cotangent bundle

## Bruno De Oliveira

University of Miami

joint past work with Y. Asega, M.L. Weiss in progress work with D. Brotber, E. Rousseau

)

W gives an algebraic differential equation of Na 1st order That f must satisfy.



McQuillan (98): X sm surf. D'x big U X saTifics:

 $\frac{\text{Green} - \text{Griff-iThs} - \text{Lang} (GGL) \text{ (onj:}}{X \text{ proj var. of gen.type, Then } \exists Z \subseteq X$ Subvar s.t.  $\forall$  entire curves  $f: \mathbb{C} \to X$  $f(\mathbb{C}) \subset \mathbb{Z}_{+}$ 

- This approach is strengthned by using K-jet differentials with K>1 (K=1 ( sym. diff)
- Questions coming from The leading hyperbolicity (onj. motivated This work, but The goal is to understand  $\Lambda_X'$  big (surface case).

(Kobayashi conj 70) The generic hypersurface 
$$X \subset \mathbb{P}^n$$
  
 $n \ge 3$ , of degree  $d \ge 2n-1$  has no entire curves.

- McQuillan, Demailly, ElGoul, Paun etc
   proved Kobayashi (mj. for Very generic
   if d≥18.
- Siv, Brotbek proved for generic if d>> 0.

• 
$$P_m^{s}(X) := h^{o}(X, S^{m}\Omega'_{x})$$
 sym. m-genus.  
bicational inv.  
 $U$   
 $\Omega'_{x}$  big is a bicational property

• 
$$\Omega_X$$
 big is NOT preserved by deformations

$$(\underbrace{Bruckmann 71}) H \subset \mathbb{P}^{n}, n \ge 3, \operatorname{Smooth} hypersorf.$$
$$P_{m}^{s}(H) = 0 \quad \forall m \ge 1$$

Q: Are There X deformation equiv. To 
$$H_d \subset \mathbb{P}^3$$
,  
hypersuif of degree  $d$  with  $\Omega'_X$  big?

If yes, what is dmin:= min {d|3X~Hd, Mx big}?

From now on we are in dim=2. RRH + Bogomolor's vanishing  $(h^2(X_1, S^m \Omega_X) = 0, m \ge 3)$  $h_{\Omega}(X) = \frac{\Lambda_2(X)}{3!} + h_{\Omega}'(X)$  $h'_{n}(X) = \lim_{m \to \infty} \frac{h'(X, S \Omega x)}{m^{3}}$  $\Delta_2(X) = c_1^2(X) - c_2(X)$ •  $\Lambda_2(\chi) > D \implies \Pi_{\chi}^{1}$  big  $(S_2(H_d) = -4d^2 + 10d)$ Q: (an  $\Omega'_X$  be big if  $c_{1/c_2}^2(X) \leq 1$ ?

Only interesting for minimal surf. otherwise it has a trivial answer, since:

> $5' \xrightarrow{-5} 5$   $c_1^2(5') = c_1^2(5) - 1$ blow mp  $c_2(5') = c_2(X) + 1$

Set  $c_1^2(X) := c_1^2(X_{min})$ ;  $c_2(X) := c_2(X_{min})$ 

$$\Lambda_{\chi}$$
 big :=  $\Lambda_{\chi}$  big ,  $\chi$  om  $\in \chi$ 



Understanding bigness of 
$$\Omega_X$$
  
for  $C_{1/2}^2(X) \leq 1$  requires a hold of  
 $h'_{\Omega}(X) := h'_{\Omega}(X_{\min})$ 

$$h'_{\Omega}(X_{min}) = NLh'_{\Omega}(X) + Lh'_{\Omega}(X)$$

$$i'_{i}$$

$$h'_{i}(X_{can}, \sigma, S^{m}\Omega'_{X_{min}}) \qquad \sum_{X \in Sinc} h'_{\Omega}(X)$$

$$\lim_{m \to \infty} \frac{h(X_{can}, \sigma_{x}^{S})}{m^{3}}$$

$$\sum_{X \in Sing(X_{can})} h_{\Omega}(x)$$



So we get The lowerbound:  

$$Lh'_{\alpha}(\chi) \leq h'_{\alpha}(\chi)$$

How to find 
$$h'_{\alpha}(n)$$
?  
Using Wahl, Blacke, Langer work on  
Chern classes of orbifold rector bundles on  
orbifold surfaces and asymp. R.R.

$$\widetilde{U}_n \longrightarrow U_n$$
 min cesser of germot  
The sting  $n$ .

Fundamental relation

$$h'_{\Omega}(n) = \frac{J_{2,loc}(n)}{3!} - h_{\Omega}^{\circ}(n)$$

 $\begin{cases} C_{1,loc}^{2}(n) = 0 & l(E_{x}) \text{ Tops. Euler char. of } E_{x} \\ C_{2,loc}(n) = R(E_{x}) - \bot & G_{x} \text{ loc. found. gp at } n \\ \frac{1}{|G_{x}|} \end{cases}$ 

$$\binom{n \text{ (anonical}}{\text{sing.}} \rightarrow \binom{h}{n} \binom{n}{n} \approx \frac{\binom{2}{2}\binom{n}{2}}{3!} - \frac{h}{n} \binom{n}{n}$$

• 
$$(A, -, W)$$
 x can such sing.  
 $h'_{\mathcal{L}}(n) \ge \frac{C_{2,loc}(n)}{Z, 3!}$  local cehom  
 $h'_{\mathcal{L}}(n, m) \le h'_{\mathcal{L}}(n, m)$ 

• 
$$[A, -, W]$$
  $(A_n \text{ singularities})$   
 $t_{\mathcal{A}}^{\circ}(A_n, m)$  is given by The (polynomial) weighted  
lattice sum over a polygon  $\mathcal{P}_n(m)$ :  
 $\# \text{ of obstruction}$   
 $t_{\mathcal{A}}^{\circ}(A_n, m) = \sum_{\substack{i, \kappa \\ i \in \mathcal{P}_n(m) \cap \mathbb{Z}^2}} t_{\mathcal{A}}^{\circ}(A_n, i, \kappa, m)$ 

P<sub>n</sub>(m) is a polygon That for fixed n varies with m preserving slopes and up To 1<sup>sr</sup> order changes with m as dilatims.

We can use Ehrhart Theory and obtain;  

$$f_{\alpha}^{\circ}(A_{n},m)$$
 is a quasi-polynomial of  
 $h_{\alpha}(A_{n},m)$  degree 3 in m of The form:  
 $f_{\alpha}^{\circ}(A_{n})m^{3} + 3f_{\alpha}(A_{n})m^{2} + c_{n}(m)m + d_{n}(m)$   
 $f_{\alpha}^{\circ}(A_{n})m^{3} + 3f_{\alpha}(A_{n})m^{2} + c_{n}(m)m + d_{n}(m)$   
 $f_{\alpha}^{\circ}$   
periodic in m.

• 
$$E_{\chi}$$
 :  $(A_{\lambda})$   

$$\begin{pmatrix} \frac{29}{216}m^{3} + \frac{29}{72}m^{2} + \frac{m}{12} & m^{6} \equiv 0 \\ \frac{29}{216}m^{3} + \frac{29}{72}m^{2} + \frac{m}{8} - \frac{193}{216} & m^{6} \equiv 1 \\ \frac{29}{216}m^{3} + \frac{29}{72}m^{2} + \frac{m}{8} - \frac{193}{216} & m^{6} \equiv 1 \\ \frac{29}{216}m^{3} + \frac{29}{72}m^{2} + \frac{7m}{36} - \frac{2}{27} & m^{6} \equiv 2 \\ \frac{29}{216}m^{3} + \frac{29}{72}m^{2} + \frac{m}{8} + \frac{3}{8} & m^{6} \equiv 3 \\ \frac{29}{216}m^{3} + \frac{29}{72}m^{2} + \frac{m}{12} - \frac{16}{27} & m^{6} \equiv 4 \\ \frac{29}{216}m^{3} + \frac{29}{72}m^{2} + \frac{17m}{12} - \frac{16}{27} & m^{6} \equiv 5 \\ \end{pmatrix}$$





• Roullean - Rousseau (14) gave a bigness criterium which can be reformulated in a form similar To the CMS-criterion:

RR-criterien:

$$\sum_{\substack{n \in \text{Sing}(X_{\text{can}})}} \frac{C_{2,\text{loc}}(n)}{2,3!} + \frac{S_{2}(\chi)}{3!} > 0 \Rightarrow \int_{\chi} big.$$

We will see the geographic impact of This!

Bounds on Lha(X)

Let XEGTA = { bir. classes of sucf of gen. Type s. T X can only has sing. of Type A }

$$Sing(X_{Can}) = dA_{n_1, \dots, A_{n_k}}$$

Set 
$$p_{-2}(\chi) := \# f(-2)$$
 curves on  $\chi_{min}$   

$$\sum_{i=1}^{K} n_i = p_{-2}(\chi)$$

We have:  $i) h_{\Omega}^{\prime}(A_{n_{i}}) + \dots + h_{\Omega}^{\prime}(A_{n_{k}}) < h_{\Omega}^{\prime}(A_{n_{i}} + \dots + n_{K})$ 

$$ii) \frac{\sum_{i=1}^{K} n_i - \kappa(\frac{1}{6})}{6} \leq h_{\Omega}^{l}(A_{n_i}) + \dots + h_{\Omega}^{l}(A_{n_k})$$

$$\frac{1}{6}$$





## $l_{-2}(\chi) \leq -\delta_2(\chi) \Longrightarrow CMS$ can't hold

Miyaoka bound

(MB) 
$$\sum_{\substack{X \in Sing(X_{can})}} C_{2,loc}(x) \leq C_{2}(X) - \frac{1}{3}C_{1}^{2}(X)$$

$$\implies RR-cniterion can cnl, hold if  $\frac{c_1^2(\chi)}{c_2}$   
(e.g., would never hold for  $\chi \sim H_{\lambda}$ ,  $d \leq 11$ )$$

• The C2, loc cost of a (-2)-arre on a An, Dn, En sing. decreases with n.

• If 
$$Sing(X_{can}) = \{A_n\}$$
, Then  $(MB) \Longrightarrow$   
 $\int_{-2}^{-2} (\chi) = n < C_2(\chi) - \frac{1}{2}C_1^2(\chi) - \frac{1}{2}$ 

• Only finitely many pairs  $(c_2, c_1^2)$  would be out of reach of The CMS-criterion (The ones with  $c_1^2 = 1, 2$ ) if This bound was sharp.

Hodge Theory bound 
$$(h^{1,1}(X_{min}))$$
  
 $(HB) \quad \rho_{-2}(X) \leq \rho(X_{min}) - 1 \leq \frac{5c_1^2(X) - c_2(X)}{6} + b_1(X) - 1$ 

• If  $b_1(\chi) = 0$ , (HB) < (NB) if  $c_1^2 \leq c_2$ .

$$(A,-,W) \quad \text{If } X \in \text{GTA}, \text{ Then}$$
i) CMS-criterion can not hold if  $C_{\ell_2}^{i}(X) \leq \frac{1}{5}$ 
ii) If  $C_1^2 > \frac{C_2 + 7}{5}$ , no known bound on  $\beta_{-2}(X)$ 
(an avoid CMS-criterion To hold

5

$$\frac{\text{(onjecture :}}{\substack{\text{K}_{big}:=\inf \left\{ \begin{array}{c} C_{i_{c_{2}}}^{2}(\chi) \right\} \int_{\chi} \int_{$$

()

• To show 
$$K_{big} = \frac{1}{5}$$
 we need contractions.  
regular case (difficult, Cris-criterion Key)  
(De Oliveire, 24) The lowest  $C_{1/c_{2}}^{1/c_{2}}$   
Known for regular surface X  
with  $\Omega_{X}^{1}$  big is  $\frac{25}{1000}$   
(resclustion of double cover of H<sup>2</sup>)  
branched along a corver with many  
ade sing  
irregular case (easier and dos not need  
CHS-interion)

(Debacc) Constructs examples of genus 2 fibrations over  
arrives of genus or with 
$$c_1^2/c_2$$
 approaching  $\frac{1}{5}$ 

$$\underbrace{cov}$$
:  $\swarrow_{big} \leq \frac{1}{5}$ 

- To show  $K_{big} \ge \frac{1}{5}$  (Work in progress with D. Brotbeck and E. Roussean)

• Deformations of hypersulf, 
$$H_d \subset \mathbb{P}^3$$
.  

$$(A, -, W 23) \quad \forall d \geqslant 8, \exists X \sim H_d \quad \text{with } \Omega_X^{!} \quad \text{big.}$$
For  $d = 7$ ,  $\exists X \sim H_7$  with  $\int_{-2}^{-2} (X) = 126$ , CMS needs at least  $\int_{-2}^{-2} (\chi) = 127$   
(appearing in  $\leq 6$  sing)  
For  $d = 6$ , CMS needs  $\int_{-2}^{-2} (X) \geqslant 85$  and  $(HB) \Longrightarrow \int_{-2}^{-2} (X) \leq 85$ .  
For  $d = 5$ ,  $C_1^2 (H_5) = \frac{1}{2}$ , CMS can not hold.

$$\frac{Cyclic (overs of 1P^{2} branched}{Line a trangements in general position}$$

$$Y_{n,v} \quad n-cyclic (cover of 1P^{2} branched) along nv lines$$

$$Sing (Y_{n,v}) = \frac{nv(nv-1)}{Z} \quad A_{n-1} \quad sing.$$

$$X_{n,v} \quad min. \quad resel. \quad of \quad Y_{n,v}$$

$$S_{2} (X_{n,v}) = (\frac{1}{n} - 1)(nv)^{2} = 3(n-1)nv + 6n$$

$$IA_{n-1} \quad vis and RR \quad criteria for 1 to hold \quad S_{n,v}^{2} \quad big$$

$$\frac{v^{n}}{2} = \frac{3}{4} \quad \frac{4}{5} \quad \frac{6}{4} \quad \frac{3}{8} \quad \frac{3}{4} \quad \frac{4}{51} \quad \frac{6}{51} \quad \frac{3}{51} \quad \frac{5}{51} \quad \frac{$$

. (

above result gives examples, X<sub>d,1</sub>~H<sub>d</sub>  
with 
$$\Omega'_{X_{d,1}}$$
 big if  $d \ge 8$ .  
BiersKorn  
simult. resel



The blue dots in the (c2, c12)-plane represent some examply of pairs (C2, (,2) occuring with ny big

- D2, K are examples coming from Debace const. (b, 70) - (2:1) is The example of double cover of IP2 branched along a curve of degree 16 with 24 againg. (b=0).

- The x (b, ) are the (c2, c1) for hyp. of degree 6, 7 while (2) for degree 8 can have the by.

